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AXISYMMETRIC TORSION OF AN ELASTIC SPACE WITH A THIN ELASTIC INCLUSION* 

YA.1. KUNETS 

The state of stress and strain of an elastic isotropic space with a thin 
foreign disc-like inclusion whose edge has the shape of a small-aperture 
angle is investigated by the method of combined asymptotic expansions 
(CAE) /l-3/. The elastic system is in a state of axisymmetric torsion. 
The principal terms are obtained for the asymptotic expansions of the 
solution of the problem in a small parameter that characterizes the 
relative thickness of the inhomogeneity. 

1, Formulation of the problem and method of solution, xn an elastic isotropic 
space let there be a thin disc-like inclusion that occupies the domain 

W, =,((r; 2): r E IO; 11; ef2 (19 Q 2 < Efl (4); f2 (r) d fl (d 

Ifi(r)I <C, ifi'( <C,C=const,O<r<*, i=l, 2 

(7, 9, z are dimensionless cylindrical coordinates, ft (r) are sufficiently smooth functions 
for O<r<1, and E is a small positive dimensionless parameter). The edge of the inclusion 
has the shape of a small-aperture angle so that 

fi (r) = bi (1 - r) + o (1 - r), r - 1 - 0, i = 1, 2; bi = const 
sg (r) = a ifI (r) - fs @)I = eb (1 - r) + 0 (1 - r), r -z 1 -0 
b = b, - bz 

(1.1) 

(W(r) is the variable thickness of the inclusion). 
Under axisymmetric torsion, the displacement vector component different from zero in an 

elastic body, the tangential displacement, satisfies the equation /4/ 

Here f2e is the domain of the body outside the inclusion, and u,(r,z) are unknown 
tangential displacements in the body when the elastic properties of tha host and inclusion 
materials are identical. 

The matching conditions on the material interfacial boundary are written as follows (it 
is assumed that the displacements and stresses are continuous during passage across the inter- 
facial surface) : 

%” + U* = as*, T, (248’ -f- u* - yue”) = 0, 2 = efi (r) 

O\(r< 1, i = 1, 2; y = &&b 

ue'= ug, a a 
~M--yg ua*, z=O, r>l 

r,(U)=Cos(r,n)(~ - $)+ cos(z&- 

cos(a,n)=(- 1)'+'-l-o(l), 

9.3) 

(1.4) 

(1.5) 

co9 (r, n) = (- I)‘+113 -& ft (r) + 0 (8)+ e -+ 0 

where p,, and p are the shear moduli of the inclusion and matrix materials, respectively, and 
cos (r, n) and cos (2, n) are the cosines of the angles between the external normal and to 
the inclusion contour and the r and z axes. 
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Furthermore, the CAE method. /l-3/ is used to seek the principal terms of the state of 
stress and strain of a composite which are, as a rule, of greatest interest in applications. 
It turns out that the solution for different values of the parameter y = p&p (O<y < m) cannot 
successfully be described in a unique manner. Consequently, it is proposed to conduct a 
separate investigation of the problem here for three ranges of variation of the parameter y: 

1)1/E :, JJ< i/I/e, 2) oi; y < 1/E, 3) l/l/E< r<=J (I.';) 

Th external and internal asymptotic expansions are constructed in each range. It will 
be shown that domains of values of y exist in which the solutions for adjacent ranges overlap 
with a certain degree of accuracy. We note that the partition (1.6) is provisional; it can 
be realized by another method. 

2. Construction of the external asymptotic expansion. The external formal 
expansion of the solution of the problem formulated describes the state of stress and strain 
in the whole composite with the exception of a small neighbourhood of the edge of the inclusion 
whose dimensions, are indicated below. We represent this expansioninthe form 

ue'(r,z)=uj,i(~,z)+eu,li(r,z)+..., s-t0 ,(2.1) 

&"(r, Z)=Ujo"(?', Z*) $ sUjr'(r, z*) + . . .t E-+0, Z=EZ* 

(i = 1, 2, 3 is a subscript indicating the range of the parameter y from (1.6)). 
We will use the variables r and z*.= z/e to describe the solution in the domain of the 

inclusion. Then (1.2) takes the form 

?$ .I9 + e2Lufg = 0, (r, z*) E w, (2.2) 

Substituting (2.1) into (1.2) and (2.2) and equating the expressions for identical 
powers of s, we obtain for the first two approximations 

(2.3) 

(2.4) 

(2.5) 

From (2.5) we have (Air(r) and Bjk (r) are unknown functions) 

Ujk’= Z*Ajk (r) + Bjk (r) (k = 0, I), Uja" = Z*Aja (r) + B,a (r) - 

+zz,*L [z,A,,(r)+ 3B,,(r)l, (r, z*)EW~, i= I,% 3 

(2.6) 

our further description will be for each range of variation of the parameter from (1.6) 
separately. 

bet us examine the range 1. We will first assume that 

y = 0 (I), l/r = 0 (I), e -+ 0 (2.7). 

Writing the conjugate conditions (1.3) for series (2.1) and equating the coefficients of 
identical powers of E, we obtain the following conjugate conditions when (1.5), (2.6) and 
(2.7) are taken into account /5/: 

ulll - Ulla = 2% 0% Au 1 a Ulla = 29, (r), 11 - aZ O<r<l. z=O 

%(r)=(i - Y)& [r% (4 &(+-u* (rM))] 

% (r) = 9 g (r) $ u* (r, 0) 

Alo (r) = 0, B,, (r) = u* (r, 0), A,, (r) = $- $ u* (r, 0) 

&,(r)=u,,' (~~0) + A(r) [$ u* (rr 0) - A,,(r)] 

(2.9) 

(2.10) 

The relationships (2.3), (2.4), (2.6), (2.8)-(2.10) completely define the principal term 
of the external expansion (2.1) obtained under condition (2.7). It can be shown by using the 
results from /2, 3, 6/ that the asymptotic expansions of the tangential displacements have the 
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form 

w’ (r, 2) = eulq (r, z) + 0 (eay2) + 0 (eVy*), e- 0, i = 1, 2 
zd (r, z) = uIoo (r, z*) + eullo (r, z*) + 0 (eay2) + 0 (e%“) 

e-0 

(2.11) 

It is seen from the estimates presented, as well as from (2.9) and (2.10), that the 
representations (2.11) hold for all values of y in the range 1 from (1.6) and cease to be 
suitable for y < Ce or 7> C/e,C = cons&e-+ 0. Consequently, ranges of variation 2 and 3 of 
the parameter y from (1.6) are additionally examined, in which the shear modulus of the in- 
clusion differs significantly from the shear modulus of the medium. 

The conjugate conditions for determining the principal terms of the external asymptotic 
expansions in cases when the elastic properties of the inclusion and matrix materials differ 
substantially are found exactly like relationships (2.8)-(2.10), except that it is assumed in 
place of (2.7) that y = ~,,/~-+O,e-+O, in range 2 and y+ 30, e-,Oin range 3. Theconjugate 
conditions mentioned have the form 

2yi(u,01 - I+~*)= g(r) -&(+,l + ha + 2%) 

G a 
zo1=~u20a, O<r<l, z=O, yz=+ 

ho (r, z*)=K1(r) hG1(r. 0) - u,,*(r, O)] [z, - fi (r)] + 
Uao'(rV 0) + u* (r, O), (r,z,)gWe 

4 %J1 (r, 0) - ; %02 (r, O)= 

- YS & x [g 09 r3 & (us01 + ho1 + h,)] 

Us01=u,02, O<r<l, z=O, ys=ey 

%0'(r9 z*) =USO~ (r, 0) + u* (r, Oh (r, z*) fz W, 

(2.13) 

(2.14) 

(2.15) 

, Relationships (2.3), (2.4), (2.12)-(2.15) completely define the principal terms ho' and 
us0 of the external expansions in ranges 2 and 3. 

An asymptotic analysis of spatial elasticity theory problems analogous to those under 
consideration was performed, for example, in /6-B/, for bodies containing more compliant or 
stiffer thin elastic inclusions than the matrix medium. Relationships (2.12) and (2.14) agree 
with the conditions obtained by another method /6, 7/ if they are written in a form correspond- 
ing to the case of the torsion of an isotropic elastic body. We mention that the above- 
mentioned relationships are equivalent to the analogous conditions used in /g-11/. Different 
models of thin inclusions in an elastic medium are presented in /12-14/ for the plane problem 
of the theory of elasticity. 

Following /2, 3, 6/, it can be shown that outside a certain small neighbourhood of the 
end of the inclusion the following estimates hold: 

uei (r, z) = uzOp (r, z) + 0 (e), e --, 0, y --> 0 

u+' (r, z) = us: (r, z) + 0 (e), e -+ 0, l/y - 0 

(ujo* (r, z) = 0 (l/xl), l/x, -+ 0, e -, 0, j = 2, 3; % = ~Yz, 

x3 = 2hs) 

(2.16) 

where the parameters ~1 are defined according to relationships (2.12) and (2.14). It follows 
from the estimates presented that the representations (2.16) lose the asymptotic nature when 
y = O(1), l/y = 0(1),e-+ 0. On the basis of (2.11) and (2.16) we see the existence of domains 
of variation of the parameter y in which the solutions obtained in adjacent ranges of (2.16) 
overlap. It is also seen that the partition into ranges can be performed by other methods 
also. 

The external representations obtained do not describe the solutions of the problem under 
consideration in a small neighbourhood of the end of the inclusion. By analogy with /l/ it 
can be shown that the size of this domain is determined by the order exp(-C/e), where C = 
con&, e--t 0. To refine the state of stress and strain in the neighbourhood mentioned somewhat 
later, we construct the internal asymptotic expansion. 

3. Solution of external problems. We now consider the solution of external 
problems, i.e., the determination of the functions ujoi, ujl' (1 = 1, 2, 3; i = 1, 2). 

By using the Rankel transform /15/, we determine from relationships (2.3), (2.4), (2.8) 
and (2.9) 



(3.1) 

(4% 0) (i = 1, 2) are functions in the relationships (2.9) ~1' = -'l, qi = (-I)‘+‘). 
It follows here from the results in /7, 16/ that near the edge of the inclusion 

u* + u1 cv D, + ED,,, + p (C, sin cp + D, ~0s cp) + E$ (P, cp), 
p-0 

(3.2) 

O<(p<2n, $=o(pInp); Dlo=Sbl(t)K~(t.I,O)dt 
0 

u1 (r, 2) = wII1 (r, z), 2 > 0; u1 (r, z) = w112 (r, z), z < 0 

1 - r = P cos cp, z = p sin cp 

u* (P, cp) ~3 0, + P (C, sin cp + D, cos cp) + . . ., P - 0 (3.3) 

(P? cp are polar coordinates and Do, C,,D, are known coefficients). 
The functions uaO* (r, z), uaO' (r, z) are determined from the relationships (2.3), (2.41, 

(2.12) and (2.14). Analogous problems were examined in /lo, 11, 17, la/, for instance. 
Using the Hankel transform, we write 

u,,'(r,z)==- l)Lj.tpi(f)K.(t,r,z)dt, k=(i+ 1)6,$; n-j+l (3.4) 
0 

j=2,3; i = 1,2; K, (t, r, z) = s qJ, (qt) J, (qr) e-W dq 
” 

29, (t) = us; (t, 0) - UzOa (6 O), 2~~ (t) = + 1 tax (t) dt 
0 

T(t) = - $ [%ol(t, 0) - um2 (L O)l, ogt<1; K, (t, r, z) = 

K, (t, r, 4 

where the kernel &(t,r,z) is described in relationships (3.1) and 61' is the kronecker delta. 
The conditions 

'pz (1) = 0, 'ps (1) = 0 (3.5) 

are imposed on the functions cp1 (t) * 
The mechanical meaning of the former is that displacements at the end of the inclusion 

should be continuous, and that ofthe latter is that the torque of forces applied to the 
inclusion is zero. 

To determine cpi (t)(j = 2,s) from (2.12) and (2.14) we obtain the integral equations 

1 

vPj(r)+ g(r)Stcpl(t)Kj*(t,r)dt=fi*(r), O<r<% j=2,3 
0 

_ 

K~*(t,r)=Sll*Jk(?f)Jk(rlr)d~, k=j--l; 
0 

(3.6) 

A* (4 = g (4 & u* (r, 0) 

f,*(r)=g(r)r~[~u,(r,O)]; x,=2y,, x3=-+ 

By analogy with /7/ it can be shown that (b is a coefficient in the asymptotic form (1.1)) 

UI (P, v) = DI, + P" ICj, sin Y’P + D,, cos VI + . . ., (3.7) 
p-+O,O<cp<2n 
y = vfr j = 2, 3; C,, = -ctg (nvp) Dal, D,, = ctg (SW*) C,, 
uI (r, z) = u lo r (r, z), z > 0; UI (r, z) = uIoB (r, z), z < 0 

~1 ctg (n~j) -I- xl/b = 0; ‘/a Q vi < 1; j = 2, 3 (3.3) 

we apply the method of collocation to the solution of (3.6). Taking (3.5) and (3.7) into 
account, we represent mj(t) as an expansion in Jacobi polynomials Pp. 6’ /17/ 
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N-l 

rp, (t) = Y-1 (1 - P)” _zQ A,jP:-” ‘) (1 - 2ta), v = v, (3.9) 

j=2,3; jtl<i 

Substituting (3.9) into (3.6) and. equating the left and right sides of the equations at 
N colLection points s,,,(m = 9,2,. .., N), 
determine the unknown coefficients dt 

we obtain a system of linear algebraic equations to 

Using results from /17, 19/, we have 

L,j (r) = r+,,*F (n + j + 3/a, - n - v - I/.$ f; ra) 

%Qn* = r-b-i-~+ur(n+i+w 
n! r (n + Y + %) 

(v =vj, r(x) is the Gamma function, and F(a, b; c; x) is the Gauss hypergeometric function). 
The accuracy with which mj(t) is calculated is monitored by comparing the results 

obtained for different values of N in (3.10). 
We find from (3.7) and (3.91, to determine the coefficients I),, and c,, 

4. Internal asymptotic expansion. The method of constructing the internalasyptotic 
expansion that refines the state of stress and strain in the neighbourhood of the end of the 
inclusion is described in /l, 2/. We will retain this same procedure with the sole difference 
that in place of an exponential scale in e for the internal variables /l/, we shall use the 
following scale (this change does not influence the final result): 

P=tEP*, f- r = p eos cp, z = p sin cp (4.1) 

Moreover, the expansion mentioned must be constructed separately in each range (1.6) of 
variation of the parameter y_ 

On the basis of the CAE method /I, 20/, we seek the internal expansion in the range in 
the form 

~e(P,~)~~**(P*,~) f s%'li(P*, rpf + . . ., e-+0, i=O, 1 (4.2) 

where the functions uk" are given in the domain W while vbl are given in the domain Q where 

W = {P* > 0, a2 < cp< a,), Q = {P* > 0, a,< cp< 2s + (4.3) 
ad 

R = Q U W, ccl = arctg (eb*), CL = a, - a, = Eb + 0 (8) 

E--r0 

Rewriting (1.21, (1.3) and (1.4) in internal variables and splitting the differential 
operators in integer powers of e, we find that ubi are the eigensolutions of the Laplace 
equation in a composite angle R that satisfy the conjugate conditions on the interfacial line 
of the materials. Using the results from /21/, we find by the m method that the eigen- 
functions mentioned have the form 

v*i(P**q?)=z),, Yri(P*, 'p)=ff,, + ~~P~CO~(~~~~) 4 (4.4) 

y-XC,& sin(h,,cp), x=sp; i=o,1 

nere Dlo, D,, Ci are coefficients in the asymptotic expansions (3.2) and (3.3), and 
%*1 h1, are roots close to one for the transcendental equation 

cos (ha)cos Ih(2n - a)1 --‘/z (y + I/y) sin (ho)sin Ih (Zn - cr)] = 1 (4.5) 

whose values we will determine below. 
Since the aperture angle of the edge of the inclusion CC= eb is a small quantity it is 

convenient to seek the solutions of (4.6) in the form of an expansion in the small parameter 
E in each of the ranges of variation (1.6) for Y separately. In procedural respects, the 
expansions mentioned are found exactly as the external representations are determined for 
the problem under consideration in Sect.%. Therefore, we have 

A,,= i+ -g+-Y)b--> h,,=i ++y-ii)+... 
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hj == vj -t wj,-+ . .( j = 2, 3 
Y ,I = 2v,b Iyr sin (ZJCVJ) - bvj cos (Ih~,)l 

[(4ny, - h) sin (ZZV~) - bvj cos (2~tv~)l~~~ 

The subscript j indicates the range of variation of the parameter y while v,(i = 2,s) 
are roots of 13.8). 

on the basis of (4.2) and 14.4) for the displacements and stresses in the matrix near 
the edge of the inclusion, we obtain the following approximate expressions written in the 
variables P, fp in the range 1 

Relationships to compute the state of stress and strain in the neighbourhood of the edge 
of the inclusion in ranges 2 and 3 are also obtained by the method described above 

(the coefficients Cjl, flli‘(i = 0, 1) are defined in (3.7) , and j is the subscript indicating 
the range (1.6) of the parameter y)* 

As is well-known /l/, the external and internal asymptotic expansions obtained above 
overlap with a definite degree of accuracy in a broad domain so that the external expansion 
can be used, for instance, in the domain p& E, and the internal expansion for P< s. 

5. Example. Let an elastic system be twisted under the effect of a concentrated moment 
M applied on the z axis at a height z0 above the inclusion. In this case /lo/ 

U* (r, z) = a,r [ra -i_ (z - ~,)~l-'~, a, = M/'(Sn[l) 

D, = a,(1 + ,@+, c, = srr,z, (1 + z&% D, = c /z - D 10 0 

where D,,C,,D, are the coefficients in (3.3). 
The state of stress and strain of a composite in the neighbourhood of the edge of an 

inclusion is determined in ranges 2 and 3 by relationships (4.8). The coefficients C,,,D,, 
ii = 2,3) in these relationships are determined during the solution of external problems (Sect. 
3). 

The dependences of the coefficients Cti and D,l on y are illustrated by curves 2 and 2 
in Fig.1 for E = 0.005 and E = 0.01 (the dashed and solid lines, respectively); a* = 10, z. = 2, 
8 (r) = 2(t - r"). The following regularity is seen: as va= yle-,m,E-rO the coefficient f&-CL 
(line 3), while &+O. Such a regularity holds in all examples of the axisymmetric torsion 
of analogous elastic systems and follows from the presence of a range of variation of the 
parameter y in which the solutions obtainedincasesl and 2 overlap with a definite degree of 
accuracy. Indeed, by taking account of the regularity presented above, as well as by comparing 
values of the tangential displacements determined by means of (4.7) and ($.a), we see that 
the difference between these values in the overlap range mentioned above has the form (i-l-C& 
O(e), p-0, e-0, where C = con&, and h is the root of (4.5). 

Fig.1 Fig.2 

An analogous regularity also holds for the coefficients C,,,D,,, whose dependence on i/y 
for the above-mentioned values of e,g(r),a, and z,is displated in Fig.2 by curves 1 and 2, 
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respectively. For va= ey-.rn,e-0 we have C31 - O,D,,+D, (line 3), which indicates the exist- 
ence of a domain of values of y, in which the internal asymptotic representations obtained in 
ranges 1 and 3 agree to within quantities of lower order than the order of the principal terms 
found for the internal asymptotic expansions. 

Note that the internal expansion obtained is not a boundary layer but just refines the 
index of the stress singularity near the inclusion edge. 

The author is grateful to Ya.S. Podstrigach and A.P. Poddubnyak for formulating the 
problem and for thier interest. 
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